Modelling Superfluid Neutron Stars


Vanessa Graber


McGill Space Institute



Neutron stars unite many extremes of physics and can serve as astrophysical laboratories that allow us to probe states of matter at densities which cannot be reached on Earth. One exciting example is the presence of superfluid and superconducting components in mature neutron stars. When developing mathematical models to describe these large-scale quantum condensates, physicists tend to focus on the interface between astrophysics and nuclear physics. Connections with low-temperature experiments are generally ignored, although there has been significant progress in understanding laboratory condensates. In this talk, I will highlight the connection between laboratory superfluids and neutron stars, suggesting several novel ways that we could make progress in understanding astrophysics using low-temperature laboratory experiments. I will specifically focus on the concept of mutual friction and present new results on how it influences the neutron star dynamics, in particular the initial response following a glitch.

Date: Tuesday, 20 March 2018
Time: 15:30
Where: McGill University
  Ernest Rutherford Physics Building, R.E. Bell Conference Room (room 103)